- X mole fraction
- R das constant

Subscripts

component number in mixtures 1.2

Superscript

Е AXCASS

Registry No. PA, 79-09-4; A, 62-53-3; MA, 26915-12-8; EA, 103-69-5.

Literature Cited

- (1) Katz, M.; Lobo, P. W.; Sancho Minano, A.; Solimo, H. Can. J. Chem.
- 1971, 49, 2605. (2) Katz, M.; Lobo, P. W.; Solimo, H. An. Asoc. Quim. Argent. 1973, 61,
- 83 (3) Solimo, H.; Riggio, R.; Lobo, P. W.; Katz, M. An. Asoc. Quim. Argent. 1974. 62. 121
- (4) Chowdoji Rao, K.; Brahmaji Rao, S. Indian J. Chem. 1982, 21A, 71.

- (5) Subha, M. C. S.; Chowdoji Rao, K.; Brahmaji Rao, S. Acta Cienc. Indica, in press.
- (6) Weissberger, A.; Proskauer, E. S.; Riddick, J. A.; Toops, E. E. Organic Solvents, 2nd ed.; Interscience: New York, 1955; Volume VII, pp 146. 235
- Ramamurthy, P.; Oliver, J.; Campbell, D. J. Chem. Eng. Data. 1985, (7)30.355.
- Katti. P. K.; Chaudhari, M. M. J. Chem. Eng. Data. 1964, 9, 442. (8) (9) Hirschfelder, J. P.; Curtis, C. F.; Bird, R. B. Molecular Theory of Gases and Liquids; Wiley: New York, 1954.
- (10) Guggenhim, E. A. Mixtures; Oxford University Press: Oxford, England, 1952.
- (11) Fort, R. J.; Moore, W. R. *Trans Faraday Soc.* 1966, *62*, 1112.
 (12) Fialkov, Yu. Ya. Russ. *J. Phys. Chem.* 1963, *37*, 1051.
- (13) Rapport, Z. Handbook of Tables for Organic Compound Identification, 3rd ed.; CRC Press: Cleveland, OH, 1960. (14) Mayer, R.; Meyer, M.; Metzer, J.; Peneloux, A. Chem. Phys. 1971,
- 62. 406. (15) Reed, T. M.; Taylor, T. E. J. Phys. Chem. 1959, 63, 58.

Received for review October 15, 1986. Revised July 13, 1987. Accepted November 23, 1987.

Vapor-Liquid Equilibria at 760 mmHg in the Systems Propyl Bromide-tert-Butyl Alcohol and Propyl Bromide-p-Xylene

Jaime Wisnlak* and Abraham Tamir

Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Vapor-liquid equilibria for the title systems have been determined at 760 mmHg. The propyl bromide-tert-butyl alcohol system shows positive deviations from ideal behavior and presents a minimum boiling point azeotrope at 68.55 °C with 23.5 mol % propyl bromide. The system propyl bromide-p-xylene behaves ideally. The bolling points were well correlated with the composition of the liquid phase.

The present work is part of our program for determining VLE data for organic systems in which one of the components is a bromide.

Experimental Section

Purity of Materials. Propyl bromide (99.6+%) was supplied by Bromine Compounds Ltd., Beer-Sheva, and analytical grade tert-butyl alcohol (99.5%+) and p-xylene (99.3%+) were purchased from Merck. The reagents were used without further purification after gas chromatography analysis failed to show any significant impurities. Properties of the components appear in Table I.

Apparatus and Procedure. An all-glass modified Dvorak-Boublik recirculation still (1) was used in the equilibrium determinations. The experimental details have been described previously (2). All analyses were carried out by gas chromatography on a Packard-Becker 417 apparatus provided with thermal conductivity detector and an Autolab Model 6300 electronic integrator. The column was 200 cm long and 0.2 cm in diameter and was packed with OV-17 and operated isothermally at 80 °C for separating tert-butyl alcohol and 100 °C for separating p-xylene. Injector and detector temperatures were (220, 240 °C) and (220, 230 °C), respectively. Very good separation was achieved with helium as the gas carrier, and calibration analyses were carried to convert the peak area ratio to composition of the sample. Concentration measurements

Table I. Physical Properties of Pure Components

	•		
р	ropyl bromide	refract. index (25 °C)	normal bp, °C
pr	opyl bromide	1.4300ª	70.55ª
		1.4302^{b}	70.80°
tei	rt-butyl alcohol	1.3853*	82.50ª
	·	1.3851^{b}	82.42^{b}
p-	xylene	1. 49 35°	138.20ª
-	•	1.4933^{b}	138.36^{b}

^a This work. ^b Reference 3. ^c Reference 4.

Table II. Experimental Vapor-Liquid Equilibria Data for tert-Butyl Alcohol (1)-Propyl Bromide (2) at 760 mmHg

					_
temp, °C	<i>x</i> ₁	y_1	γ_1	γ_2	
69.00	0.080	0.125	2.6586	1.0105	
68.65	0.140	0.170	2.0978	1.0363	
68.66	0.170	0.185	1.8795	1.0540	
68.54	0.204	0.205	1.7447	1.0760	
68.55	0.230	0.220	1.6602	1.0909	
68.43	0.280	0.245	1.5268	1.1334	
68.52	0.290	0.243	1.4565	1.1493	
69.03	0.405	0.305	1.2819	1.2393	
69.60	0.515	0.370	1.2031	1.3612	
70.40	0.610	0.430	1.1421	1.4944	
71.15	0.650	0.465	1.1158	1.5199	
71.35	0.665	0.455	1.0583	1.6081	
71.50	0.680	0.470	1.0474	1.6127	
71.80	0.695	0.500	1.0660	1.5700	
71.90	0.700	0.510	1.1157	1.6020	
75.80	0.870	0.700	1.0333	1.9884	
76.91	0.900	0.755	1.0377	2.0553	
77.80	0.925	0.805	1.0395	2.1231	
78.39	0.933	0.820	1.0259	2.1570	
78.30	0.941	0.835	1.0394	2.2508	
79.10	0.957	0.870	1.0323	2.3780	
79.65	0.970	0.905	1.0371	2.4517	
80.50	0.980	0.935	1.0339	2 4694	

were accurate to better than $\pm 1\%$. The accuracy in determination of pressure and temperature was $\Delta P = \pm 2$ mmHg and $\Delta T = \pm 0.02$ °C.

Table III.	Experimental	Vapor-Liquid	Equilibria	Data for
Propyl Bro	omide (1)-p-Xy	lene (2) at 760	mmHg	

				-	
ter	mp, °C	<i>x</i> ₁	<i>y</i> ₁	γ_1	γ_2
	73.78	0.905	0.988	1.0056	0.9872
	74.10	0.900	0.987	0.9997	0.9973
	74.44	0.890	0.985	0.9988	1.0323
	78.48	0.775	0.965	0.9992	1.0089
	81.68	0.720	0.945	0.9619	1.1302
	86.10	0.600	0.915	0.9894	1.0408
	89.47	0.530	0.885	0.9896	1.0632
	90.10	0.525	0.885	0.9825	1.0291
	92.83	0.475	0.860	0.9825	1.0312
	93.15	0.470	0.860	0.9848	1.0104
	93.46	0.465	0.845	0.9702	1.0962
	97.20	0.415	0.825	0.9649	0.9979
1	.01.67	0.335	0.770	0.9987	0.9960
1	07.70	0.280	0.710	0.9724	0.9908
1	12.30	0.220	0.630	0.9691	0.9745
1	15.70	0.180	0.570	0.9930	0.9781
1	23.40	0.081	0.405	1.0524	0.9775
1	27.67	0.067	0.285	1.0348	1.0163
1	.34.08	0.024	0.110	0.9814	1.0185

Table IV. Antoine Constants^a

	α_i	β_i	δ_i	
propyl bromide	6.91065	1194.889	225.51	_
tert-butyl alcohol	7.31994	1154.48	177.65	
<i>p</i> -xylene	6.99052	1453.43	215.307	

^aReference 3.

X, Y TERT BUTANOL

Figure 1. Temperature-composition diagram: propyl bromide-tertbutyl alcohol.

Results

The temperature-concentration measurements are reported in Tables II and III and Figures 1-3. The activity coefficients were calculated from the following equations:

$$\ln \gamma_{1} = \ln (Py_{1}/P_{1}^{0}x_{1}) + (B_{11} - v_{1}^{-1})(P - P_{1}^{0})/RT + P(1 - y_{1})^{2}\delta_{12}/RT$$
(1)

$$\delta_{ij} = 2B_{ij} - B_{ij} - B_{jj} \qquad (2)$$

Vapor pressures of the pure components, P_l^{0} , were calculated according to Antoine's equation

$$\log P_i^{0} = \alpha_i - \beta_i / (t + \delta_i)$$
(3)

where the constants appear in Table IV (3, 4). The virial

MOLE FRACTION PROPYL BROMIDE (1)

Figure 2. Activity coefficients for the system propyl bromide-*tert*-butyl alcohol.

Figure 3. Temperature-composition diagram: propyl bromide-p-xylene.

coefficients B_{11} , B_{22} , and B_{12} were estimated by the method of Tsonopoulos (5, 6) using the molar parameters suggested by the author.

The activity coefficients reported in Table II and III are thermodynamically consistent and show that the system propyl bromide–*tert*-butyl alcohol has positive deviation from Raoult's law while the system propyl bromide–p-xylene behaves ideally.

Boiling points of the binary systems were correlated by the equation suggested by Wisniak and Tamir (7):

$$= x_1 T_1 + x_2 T_2 + x_1 x_2 [C_0 + C_1 (x_1 - x_2) + C_2 (x_1 - x_2)^2 + ...]$$
(4)

An optimization technique yielded the following values for the constants:

propyl bromide-tert-butyl alcohol:

Т

$$C_0 = -26.61, \quad C_1 = -9.600, \quad C_2 = -21.48;$$

rmsd = 0.37

propyl bromide-
$$p$$
-xylene:
 $C_0 = -49.75, \quad C_1 = 25.24, \quad C_2 = 15.48;$
rmsd = 0.54

Boiling points for the system propyl bromide -p-xylene were also correlated by another equation proposed by Wisniak (β):

$$T = x_1 T_1 + x_2 T_2 + A x_1 x_2 (-B x_1)$$
(5)

The constants were determined to be A = -79.12 and B =0.844, with $r^2 = 0.963$.

Acknowledgment

Yehudit Reizner and Moshe Golder helped in the experimental and numerical calculations.

Glossary

α, β, δ	constants
B_{ii}, B_{ii}	virial coefficients
n	number of experimental points
Ρ	total pressure, mmHg
P , ⁰	vapor pressure of pure component, mmHg
Ŕ	gas constant, 82.06 cm ³ /(g·mol·K)
rmsd	root mean square deviation, $\left[\sum (T_{evoid} - T_{calcil})^2/n\right]^{1/2}$
t, T	temperature, °C, K
V,L	molar volume of pure liquid /, mL/mol
x _i , y _i	molar fraction of component / in the liquid and vapor
	huasas

δ, activity coefficient of component / Subscripts

calcd calculated

- expti experimental
- 1, [component i, j

Registry No. Propyl bromide, 106-94-5; tert-butyl alcohol, 75-65-0; p-xylene, 106-42-3.

Literature Cited

- (1) Boublikova, L., Lu, B. C. Y. J. Appl. Chem., 1969, 19, 89.
- Wisniak, J., Tamir, A. J. Chem. Eng. Data, 1975, 20, 168. TRC Tables Selected Values of Properties of Chemical Compounds; (3) Thermodynamic Research Center Data Project: College Station, TX, 1974.
- (4) Perry, R. H. Perry's Chemical Engineers' Handbook, 6th ed.; McGraw-Hill: New York, 1984; pp 3-41. (5) Tsonopoulos, C. AIChE J. 1974, 20, 263. (6) Tsonopoulos, C. AIChE J. 1975, 21, 827.

- Wisniak, J.; Tamir, A. Chem. Eng. Sci. 1975, 30, 335. (7)
- (8) Wisniak, J. Indian J. Technol. 1984, 22, 77.

Received for review November 6, 1986. Revised May 20, 1987. Accepted October 7, 1987. This project was partially financed by Bromine Compounds Ltd., Beer-Sheva.

Vapor-Liguid Equilibria at 760 mmHg for the System 1,1-Dichloroethane-Propyl Bromide

Jaime Wisniak* and Abraham Tamir

Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Vapor-liquid equilibria for the title system have been determined at 760 mmHg. The system behaves almost ideally. The boiling points were well correlated with the composition of the liquid phase.

The present work is part of our program for determining VLE data for organic systems in which one of the components is a bromide.

Experimental Section

Purity of Materials. Propyl bromide (99.6+%) was supplied by Bromine Compounds Ltd., Beer-Sheva, and 1,1-dichloroethane analytical grade (99.6+%) was purchased from Merck. The reagents were used without further purification after gas chromatography analysis failed to show any significant impurities. Properties of the components appear in Table I.

Apparatus and Procedure. An all-glass modified Dvorak-Boublik recirculation still (1) was used in the equilibrium determinations. The experimental details have been described previously (2). All analyses were carried out by gas chromatography on a Packard-Becker 417 apparatus provided with thermal conductivity detector and an Autolab Model 6300 electronic integrator. The column was 200 cm long and 0.2 cm in diameter and was packed with OV-17 and was operated isothermally at 80 °C. Injector and detector temperatures were 230 and 240 °C, respectively. Very good separation was achieved with helium as the gas carrier, and calibration analyses were carried to convert the peak area ratio to composition

Table I. Physical Properties of Pure Components

compd	refractive index (25 °C)	normal bp, °C
propyl bromide	1.4300 ^a	70.55ª
-	1.4302^{b}	70.80^{b}
1,1-dichloroethane	1.4138ª	57.29°
	1.4135^{b}	57.28^{b}

^a This work. ^b Reference 3.

Table I	I. Exper	imental V	apor-Liqu	id Equilib.	rium D	ata
for 1,1-	Dichloro	ethane (1)	-Propyl B	romide (2)	at 760 1	mmHg

temp, °C	<i>x</i> ₁	y_1	γ_1	γ_2	
70.00	0.061	0.095	1.0576	0.9935	
69.09	0.111	0.165	1.0365	0.9955	
68.80	0.115	0.175	1.0702	0.9968	
68.20	0.150	0.224	1.0688	0.9944	
67.55	0.204	0.279	0.9978	1.0066	
67.38	0.208	0.284	1.0012	1.0100	
67.08	0.220	0.303	1.0189	1.0077	
65.11	0.332	0.437	1.0328	1.0109	
63.62	0.441	0.551	1.0255	1.0100	
63.55	0.442	0.545	1.0142	1.0276	
62.17	0.515	0.617	1.0280	1.0402	
60.33	0.652	0.741	1.0323	1.0407	
59.59	0.697	0.781	1.0416	1.0354	
59.00	0.732	0.816	1.0556	1.0028	
58.62	0.805	0.859	1.0227	1.0695	
58.22	0.830	0.877	1.0259	1.0848	
58.00	0.856	0.900	1.0276	1.0485	

of the sample. Concentration measurements were accurate to better than $\pm 1\%$. The accuracy in determination of pressure and temperature was $\Delta P = \pm 2$ mmHg and $\Delta T = \pm 0.02$ °C.